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ABSTRACT: We describe here a general model of the kinetic
mechanism of protein folding. In the Foldon Funnel Model,
proteins fold in units of secondary structures, which form
sequentially along the folding pathway, stabilized by tertiary
interactions. The model predicts that the free energy landscape
has a volcano shape, rather than a simple funnel, that folding is
two-state (single-exponential) when secondary structures are
intrinsically unstable, and that each structure along the folding
path is a transition state for the previous structure. It shows
how sequential pathways are consistent with multiple
stochastic routes on funnel landscapes, and it gives good agreement with the 9 order of magnitude dependence of folding
rates on protein size for a set of 93 proteins, at the same time it is consistent with the near independence of folding equilibrium
constant on size. This model gives estimates of folding rates of proteomes, leading to a median folding time in Escherichia coli of
about 5 s.

■ INTRODUCTION
Is there a general mechanism of protein folding kinetics? On
the one hand, different types of protein molecules adopt
different native structureshaving distinctive secondary and
tertiary structures and packing details. On the other hand,
remarkably, essentially all small soluble globular proteins tend
to reach their different atomically detailed native structures
rapidly (often milliseconds) and with the simplest possible
kinetics (single-exponential), independent of initial conditions.
While folding rates span 9 orders of magnitude,1 folding
equilibria are quite insensitive to protein structure. Is there a
folding mechanism, that is, a single narrative description that
rationalizes the rates and sequences of folding events in
common across different amino acid sequences and initial
conditions?
Beginning about 40 years ago, major insights on the

thermodynamics and kinetics of protein folding have emerged
from experiments, computer simulations, correlational studies,
and theoretical modeling.2−10 First, an early and important view
has been that proteins fold kinetically through the rapid
formation and assembly of secondary structures.6,8,11−19

Second, Plaxco et al. had the pioneering insight that a protein’s
folding rate depends on properties that are evident from its
native structure.20 They found that helical proteins tend to fold
faster than β-sheet proteins and, in general, that local structures
tend to form faster than nonlocal ones. In a more detailed
discussion in Supporting Information, we describe the current
consensus1,21−24 that folding rates are better correlated with a
protein’s sizeits chain length (L), its number of secondary
structures (N), or its absolute contact order (ACO)than they
are with other metrics, like the relative contact order (RCO),

that only consider the topology of a protein’s native structure
(Figure S1 and Table S1). Such folding rate data sets have also
been fitted by statistical models.21−23,25−29 Third, important
insights have emerged from Ising models of folding. Zwanzig,
Szabo, and Bagchi (ZSB) used Ising models to show how the
funnel shapes of energy landscapes lead to fast folding.30,31

Muñoz, Eaton, Baker, Finkelstein, and others32−38 have further
developed and applied the ZSB approach, adding more detailed
residue-level information in the form of contacts, hydrogen
bonds, buried surface area, and loop entropies. Barrick and co-
workers have used Ising models to explain their exceptionally
comprehensive folding energy landscapes of linear repeat
proteins, such as ankyrin, which fold along parallel paths.39−42

In their model, each folding unit is an individual repeat,
whereas in our model, each unit is a secondary structure. Regan
and co-workers have also used an Ising-like framework to study
the thermodynamic properties of repeat proteins.43 Fourth,
previous work has shown that equilibrium protein folding
cooperativities can be explained as a combination of weak
propensities of peptide chains to form secondary structures and
stronger propensities of tertiary interactions to stabilize the
secondary structures.44

However, as far as we are aware, there is not yet a
quantitative model for a general folding mechanism that
predicts folding rates and routes from only a protein’s amino
acid sequence. Here, we develop a model that does not require
prior knowledge of native topologies, structural propensities,
native geometric details, or initial conditions. An associated
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purpose of the model is to reconcile the “pathway view” that
folding follows well-defined sequential events with the “funnel
view” that folding follows combinatoric microscopic routes.45 A
general mechanism should account for why simple protein
folding is single-exponential, the nature of the folding transition
state, the sequence of formation of secondary and tertiary
structures, the relative speeds of formation of the different
substructures, and the nature of cooperativity in kinetics.
Model. To express a protein’s folding equilibrium and

kinetics, we adapt the Ising-like approach of Zwanzig,30,31

except that instead of independent amino acids, the individual
units of folding in our model are the secondary structures. We
represent a protein’s N secondary structural units as a 1-D
string of symbols fffuffuufuffff, where f indicates that a particular
secondary structure is in its folded native-like conformation and
u indicates that it is in an unfolded non-native conformation.
Let c represent the number of f’s, the correct secondary
structures in the string. Therefore, c = N represents the folded
native state; c = N − 1 describes the state in which the protein
is native in all but one of its secondary structures, so there is
one u somewhere in the string, and c = 0 corresponds to the
fully unfolded molecule.
The model folding process is shown in Figure 1 for a 4-helix

bundle (hb). Secondary structures form independently.
Secondary structures can pair together, stabilized by tertiary
interactions between them. Adopting literature terminology, we
call these secondary structure elements foldons.15,18,19 The main
folding routes entail increasingly native structure that is
assembled through the sequential addition of one secondary
structure at a time. The routes are combinatoric and stochastic:
different molecules fold via different sequences of secondary
structural events. We call this the Foldon Funnel Model.
Thermodynamics of the Model. In this model, the

Boltzmann weight w(c) for any non-native protein config-
uration having c = 1,2,3,...N − 1 correct secondary structures
includes the equilibrium constant K2 for each of the c secondary
structures formed at a particular stage of folding progress, the
equilibrium constant K3 for each of the nc tertiary pairings of
secondary structures, and the numbers of different ways the

folded and unfolded units can be arranged in a 1-D string at a
particular state c of the folding progress. Hence, we define
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The microscopic basis for K2 is the same as in helix−coil
theory: hydrogen bonds stabilize secondary structures, and local
chain entropy opposes them. Similarly, K3 arises from contact
interactions among pairs of secondary structures and includes
hydrophobic, steric, and hydrogen bonding interactions. Kf
accounts for the extra stabilization of a protein that steps from
the next-to-native to the native structure because of the final
packing and assembly (see below). That is, we envision loose
packings of the secondary structures in the early steps up to c =
N − 1, and then native-like tight packing only in the final
folding step, from N − 1 to N. The weight w(0) = 1 accounts
for the fully unfolded protein; w(1) = NK2 accounts for the
formation of any one of the N individual secondary structures;
w(N − 1) = NK2

N − 1K3
nN − 1 accounts for the formation of the

next-to-native state; and w(N) = K2
NK3

nNKf accounts for the fully
folded protein. The quantity nc is the total number of tertiary
interactions made by a secondary structure. From our protein
data set, we find that nc saturates; see Figure 2. That is, for
simple reasons of steric geometric exclusion, a secondary
structure cannot typically be surrounded by more than about
4−5 other neighboring secondary structures: nc is defined as a
discrete function of c
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where nc is defined by the combinatorics of nearest-neighbor
interactions. When there are zero or one secondary structures

Figure 1. Premises of the model: (1) Each secondary structure folds independently of others. (2) Tertiary structure forms as pairs of secondary
structures. The folding process is a sequential accretion of secondary structure elements. (3) Routes are combinatoric: different secondary structures
assemble along different trajectories.

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja5049434 | J. Am. Chem. Soc. 2014, 136, 11420−1142711421



(c = 0 or 1), there can be no tertiary interactions. When there
are c = 2 secondary structures, there is nc = 1 tertiary interaction
between them. When there are c = 3 secondary structures, there
are nc = 3 pairwise tertiary interactions between them. For c > 3,
each additional secondary structure gains four tertiary neighbor
interactions upon folding because this is approximately the
maximum that is sterically possible; see Figure 2.
From the weights w(c), the equilibrium population for any

point c along the reaction coordinate is given by p(c) = w(c)/Q,
where Q = QU + QF is the partition function, that is, the sum of
weights QU over all the non-native states and over QF of the
folded state:
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The free energy landscape is given by ΔG(c) = −RT
ln[pc(eq)]. Figure 4 shows a funnel representation of ΔG(c).
The radial distance from the center of the funnel is the reaction
coordinate c, the number of folded secondary structures. The
outer flat region of the landscape corresponds to unfolded
conformations (c = 0). As the protein moves uphill, secondary
structures are formed. Surmounting the barrier at c = N − 1
leads to the folded state, which is the global free energy
minimum.
Kinetics of the Model: The Folding and Unfolding

Rates. The folding and unfolding dynamics of the model can
be described by a continuous-time Markov process. On the one
hand, we can compute the full dynamics of the model (for
details, see Supporting Information). On the other hand, in an
important limit, we can compute the dynamics in a very simple
analytical way. In particular, because we find that the best fits to
the folding rate data are when the highest barrier is at c = N −
1, the folding and unfolding rates are well-approximated by
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where k1 is a rate constant for the folding of a single secondary
structure. In the Supporting Information, we show that these
analytical expressions capture with negligible error, for
appropriate ranges of parameter values, the results of the full
master equation as computed by numerical integration and as
found by eigen decomposition of the rate matrix. In the
Supporting Information, we also show that there is a gap in the
eigen value spectrum, which means that the model predicts a
single dominant slowest exponential relaxation time, character-
istic of two-state kinetics, which is the general behavior seen for
the folding of small globular proteins.

Experimental Data Set and the Model Parameters. For
comparison with experiments, we considered a data set of 93
globular proteins for which the folding rates are known; see
Tables S3 and S4. This data set includes both two-state and
multistate folders. For the multistate proteins, we considered
only the slowest folding phase. We use this data set to fit the
two parameters of the model, K2 and K3. To do this, we first
fixed the value of the speed-limit parameter k1 to 105.6 s−1, the
mean value of the folding rates of the two elementary
secondary structures, N = 1: the mini-protein Trp cage and
the central helix of ribosomal protein L9. Also, because prior
modeling gives protein folding equilibrium constants K(L) as a
function of the chain length L, we used that data to fix the value
of Kf in our quantity QF/QU.

46,47 Kf ranges from 1.75 for N = 1
to 19.4 for N = 30 (Table S2). This ensures consistency with
the known database of protein stabilities and therefore ensures
roughly correct unfolding rates, as well. We bootstrapped the
folding rate data and fitted each resampled data set in order to
generate a confidence interval. The 95% confidence interval
bands are plotted in gray. R2 = 0.63 for this fit.

■ RESULTS AND DISCUSSION
Folding Landscape Is Shaped Like a Volcano. Figure 3

compares the model predictions from eq 4 to experimental data
on folding rates of the 93 globular proteins using best-fit values:
K2 = 0.037 and K3 = 1.96. From this modeling, we draw a few
conclusions.

Figure 2. Distribution of nearest-neighbors of a given secondary
structural element in a protein, as a function of the total number of
secondary structures in that protein. A pair of secondary structures are
neighbors if they have at least 1 residue−residue contact. Residue
contacts were determined from a centroid for each residue with a
cutoff of 8 Å. The plot is based on the 93 proteins in our data set.

Figure 3. Folding rates predicted by model. Folding rate vs number of
secondary structures, N. The colored points are experimental values,
and they are colored by structural class. The black line is the prediction
from the model, and the gray bands represent the 95% confidence
interval. The black line represents a perfect fit to the data. Fit
parameters (95% CI): K2 = 0.037 (0.025, 0.058), K3 = 1.96 (1.67,
2.23). We fixed k1 = 105.6 s−1, and Kf was fitted to an equilibrium
stability model, independent of the folding rate fit. Fit quality (95%
CI): R2 = 0.63 (0.49, 0.72), rms error = 1.30 (0.96, 1.65).
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Outer Landscape Is Sloped Uphill Because Secondary
Structures Are Not Stable. Because the parameters we obtain
are K2 ≪ 1 and K3 > 1, we infer that secondary structures are
unstable alone and that they are stabilized by tertiary
interactions. This prediction is consistent with experiments
indicating that most protein secondary structures are unstable
on their own.48,49 The prediction is also consistent with
measured protein equilibrium cooperativities.44 So, the
predicted folding landscape for two-state folders is shaped
like a volcano when plotted versus the 1D mesoscale reaction
coordinate c that we use here; see Figure 4. That is, folding is a
series of uphill steps in free energy as the earliest secondary
structures form and assemble into increasingly native-like
tertiary structure; only the last step from c = N − 1 to N is
downhill in free energy. Forming the first helix (i.e., the step
from c = 0 to c = 1) is the most costly step. Forming the second
helix (from c = 1 to c = 2) is less costly because the second helix
is stabilized by assembling onto the first helix as folding

proceeds. So, the slope of the free energy landscape versus c is
steep for small c but decreases at larger c.

Folding Is Two-State (Single-Exponential) Because the
Global Bottleneck Is the Last Step in Folding. The highest free
energy on the volcano landscape is at c = N − 1, the structure
just before the native state. Hence, all earlier steps are
effectively in pre-equilibrium. This divides conformational
space into the two kinetic states: native (c = N) versus all
others. Single-exponential behavior would not have intrinsically
been expected for such a heterogeneous and complex process
as protein folding. Indeed, there may be other parameter
regimes, K2 and K3, that do not lead to two-state kinetics.

What Is the Transition State? The present model resolves a
puzzle. Does the transition state appear early or late along the
folding pathway? The present model gives an explanation for
the ambiguity. As noted above, the global TS in the model is
the last step in folding; it is the point of highest free energy on
the landscape. Said differently, the last step is responsible for

Figure 4. Free energy landscape of Foldon Funnel Model. The radial distance corresponds to c, the number of folded secondary structures. The
height of the landscape corresponds to free energy (ΔG(c) = −RT ln[pc(eq)]). The initial flat region on the outer edge represents c = 0, and the start
of the climb represents the c = 0 to c = 1 transition. The center of the landscape represents the folded state, c = N. The landscape was computed from
the best-fit parameters described in the Results and Discussion section for an N = 4 protein. The slope of the volcano is relatively linear. On the one
hand, K3 reduces the steepness at each step relative to only K2 terms alone, but the combinatoric term essentially compensates that increase.

Figure 5. Dynamics of a four-helix bundle. As the folding reaction proceeds, the probability of occupying each intermediate state rises and falls as the
protein traverses its free energy landscape from the unfolded c = 0 state to the folded c = 4 state. The folding trajectory was computed by numerically
integrating the kinetic master equation (see Supporting Information) for an N = 4 protein, using parameters K2 = 0.037, K3 = 1.96, k1 = 105.6 s−1, and
Kf = 5.23.
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the dominant slowest exponential of the kinetics. On the other
hand, further insight is available from looking at the full
dynamics of folding, shown in Figure 5 for a 4-helix bundle
(4hb). It shows that the full kinetics entails nested transition
states for the individual folding steps. While the 3hb is the TS
for final step of folding, the 2hb is also the TS for the prior step
(from single helix to the 3hb). In short, each partial structure
along the folding pathway is a transition state for propagating
earlier structures to later ones. Also, in our model, the transition
state for folding is a loose association of the native secondary
structures that occurs prior to native-like tighter packing,
consistent with the view from the nucleation−condensation
hypothesis that the TS is large diffuse nucleus.50

Does Folding Follow a Single Sequential Pathway or
Parallel Heterogeneous Routes? The present model is
consistent with both the funnel landscape view that folding is
a disorder-to-order transition through many different micro-
scopic routes9,45,51,52 and the view of folding based on
sequential pathways and “foldons”, wherein secondary struc-
tural elements fold via particular path-like sequences of
events.15,18 Funnels and foldon paths are not mutually
exclusive; they are just different perspectives at different levels
of resolution, functions of different degrees of freedom, and
focused on different parts of the landscape. Funnels express free
energies in terms of microscopic degrees of freedom. Pathways
express free energies in terms of macroscopic reaction
coordinates. Here, our modeling is mesoscale. We express
our free energy landscape in terms of a single reaction
coordinate c. Some aspects of the foldon path perspective are
evident in the present model: the reaction coordinate is one-
dimensional, and there is a clear sequential order of folding
events through the formation of c = 1,2,3,...N folding units. On
the other hand, the funnel perspective is also evident: Figure 1
shows the combinatorics of the many different routes of
assembling the secondary structures (there are additional route
combinatorics that arise from the many microscopic routes for
forming each secondary structure, but those are below the
resolution of the present model). The folding of any particular
protein entails more subtle aspects: not all secondary structures
form at the same rate, for example, but we believe the present
model captures the essential physics with a minimum of
parameters.
Recently, Hu et al. have performed comprehensive pulsed

HX experiments to identify the folding pathways of RNase H.19

Consistent with our model, Hu et al. found that RNase H folds
in units no smaller than secondary structural elements
(foldons), that those elements form and assemble into ever
larger and more native-like structures, and that some individual
foldons form concurrently (D/5 and BC/loop), while other
foldons assemble with each other in series. Yet, one difference
is apparent: the free energy landscape of Hue et al. is a down-
staircase with sequentially stabilized intermediates, while ours is
an up-staircase. The essential difference here is that our model
only pertains to two-state folding, so it does not address
questions of stable intermediates, such as the one observed by
Hu et al. Hu et al. found a large final barrier for the folding of
123/E and its assembly with A/4, D/5, and BC/loop. We note
that the experiments of Guinn et al.53 and the modeling of
Adhikari et al.54 also give up-staircase landscapes in two-state
proteins.
Why Does the Folding Speed of a Protein Correlate with

the “Localness” Of Its Native Structure? Previous studies,
starting with Plaxco, Simons, and Baker20 have found that

protein folding rates are correlated with a native protein’s
contact order (CO), a measure of the protein’s numbers of local
versus nonlocal contacts.22,23 For example, helical proteins,
which contain contacts that are mostly local in the sequence,
tend to fold faster than β proteins. Others have compared the
logarithm of the folding rate to linear29,55 or square-root
functions of the chain length.1,21−24,29,56 In Supporting
Information, we show a few such correlations on our test set
of 93 proteins. The present work gives a mechanistic
explanation for such observations. In the Foldon Funnel
Model, secondary structures form fast (but they unravel even
faster since secondary structures are unstable on their own),
but, because they form sequentially, more secondary structures
take more time. Hence the folding time τ, 1/kf(L), increases
with chain length L (because L and N are linearly related; see
Figure 6). We believe that the CO is simply a surrogate for the

effect of protein size (L or N) because folding rates only
correlate with the absolute contact order (which is proportional
to L) and not with the relative contact order (which is
independent of L); see Supporting Information for further
discussion.

What Is the Nature of Folding Cooperativity? The present
model recognizes three types of folding cooperativity: from the
formation of secondary structures (in K2), from the additional
stabilization when secondary structures assemble into tertiary
structures (in K3), and from packing into the native state (in
Kf). Figure 7 shows the model prediction that small proteins
tend to be more stabilized by packing, while larger ones are
more stabilized by tertiary interactions.
The present model only treats how folding rates depend on

protein size and not otherwise on the protein’s amino acid
sequence. However, it is well-known that the effects of the
sequence can be large. This can be seen from the broad scatter
around the fit line in Figure 3. Some structurally similar
proteins (identical N) have folding rates that differ by orders of
magnitude. An example is the spectrin superfamily; these
proteins have very different folding rates despite nearly identical
chain lengths, secondary structure counts, and topologies.57

Another example is the homeodomain superfamily.58 Our data
set includes both the spectrin and homeodomain helix bundles,
but our focus on protein size and global fitting prevents us from

Figure 6. Number of secondary structures vs chain length for the 93
proteins in our data set. Our fit line is N = γL, where γ = 0.0718
secondary structures per amino acid. R2 = 0.85. The slope of the line
corresponds to an average of ≈14 amino acids per secondary structure.
However, this fit includes loops, so it represents an overestimate of
average secondary structure length.
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predicting the sequence-dependent variation of rates within
each family.
Estimating the Folding Kinetics of Proteomes. Finally,

we are able to place a cell’s protein folding kinetics in the
context of other rate processes in the cell. As noted above,
protein folding times can be estimated simply from the length L
of the protein chain. Because protein-length distributions are
known for many cellular proteomes, we can estimate the
folding time distribution of whole cellular proteomes. Of
course, such an estimate must be crude at the present time. For
one thing, many proteins have multiple domains,59 yet only
very little is yet known about multidomain folding rates.60

Nevertheless, we combined our Foldon Funnel Model
prediction for folding rates, kf(L), with the known protein-
length distribution p(L) for the Escherichia coli proteome, and
made our best estimate of the effects of domains to compute
the approximate distribution of folding times for the E. coli
proteome shown in Figure 8. [We use the domain annotations
from the SUPERFAMILY database,61 which contains domain
annotations for 3003 out of the 4228 proteins in the E. coli
proteome. In the absence of better information, we assume that

each domain folds as an independent unit. (Because domains
stabilize each other, the principal error introduced here will be
to underestimate the folding rates of multidomain proteins.)
We approximate the folding time of each of the 3003 annotated
proteins as the folding time of its largest (and slowest) domain.
Here, we use the rate of the slowest domain as an
approximation because we just want a rough orders of
magnitude comparison of folding times.] It shows that the
median protein in E. coli folds on the 5 s time scale, and also
that there is a large variance. Figure 8 also indicates a few other
time scales that are relevant to the cell: the left line (dark blue)
indicates the roughly 16 s that is required to synthesize an
average E. coli protein (325 amino acids × 0.05 s to add each
amino acid in translation62); the middle line (orange) indicates
the roughly 30 s it takes for E. coli’s GroEL chaperones to refold
a protein (a protein spends about 10 s in the chaperone cavity
and takes about 3 recycling events to fold63,64); and the right
line (teal) indicates E. coli’s minimum doubling time of 20 min.
Until the folding of larger and multidomain proteins is better
understood, this distribution should be regarded as nothing
more than just a simple estimate of folding times relative to
other cellular landmark time scales.
However, the figure also illuminates a huge gap in our

current knowledgehow do large domains fold? Over 600 of
the proteins are predicted to fold on time scales slower than the
doubling time, due to large, slow-folding domains (>400 amino
acids). One explanation is that these large domains may actually
be made up of subdomains that fold independently, even
though current domain annotations treat them as single
domains. It also seems likely that many factors may mitigate
problems from slow-folding times, including chaperones,
folding on the ribosome, and kinetic cooperativity between
protein domains.

■ CONCLUSIONS

We have developed a simple but general mechanistic model of
protein folding kinetics. The Foldon Funnel Model posits that
secondary structures are the units of folding assembly, that they
are relatively unstable, that isolated units flicker in and out of

Figure 7. Fractional contribution of K3 and Kf to stabilization of folded state vs number of secondary structures. For small proteins, the packing term
Kf stabilizes the folded state more than the tertiary interaction term K3. For larger proteins, the reverse is true; K3 contributes more than Kf.

Figure 8. E. coli folding time distribution. Colored lines indicate time
scales for key cellular processes: (dark blue) ribosomal protein
synthesis, (orange) GroEL refolding, (teal) doubling time.
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structure, and that individual secondary structures are stabilized
and escorted along the folding route by neighboring secondary
structures that lead to tertiary structure. It predicts that the free
energy landscape of two-state folders is volcano-shaped: uphill
for the first structures formed, and only downhill in the last step
to the native state. Transition states are found to be nested:
later structures are bottlenecks for earlier structures. The model
is consistent with both general observations on small proteins,
namely, that they are two-state (single-exponential), that
tertiary contacts give stability and cooperativity to equilibrium
native structures, that localness of the native structure correlates
with folding speed, and with the observed nonlinear depend-
ence of the logarithm of folding rate on number of secondary
structures on a test set of 93 proteins.

■ ASSOCIATED CONTENT

*S Supporting Information
Details of our kinetic model are given, along with a comparison
to other simple metric fits, like contact order and chain length.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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